If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=76
We move all terms to the left:
c^2-(76)=0
a = 1; b = 0; c = -76;
Δ = b2-4ac
Δ = 02-4·1·(-76)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*1}=\frac{0-4\sqrt{19}}{2} =-\frac{4\sqrt{19}}{2} =-2\sqrt{19} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*1}=\frac{0+4\sqrt{19}}{2} =\frac{4\sqrt{19}}{2} =2\sqrt{19} $
| 4k-7k+-11=7 | | 9x^2-41x+92=0 | | x^2+x-42^2=0 | | 3x-4/2=6x-8 | | -5(2x+2)=3(x+2)-20 | | –2y+10=–y | | 3(x-7)/2=X-1/3 | | 20x+5-24-1=180 | | x^2-1=(x+1)(-1) | | 23-(x+9)=4x-6 | | -4(5-6x)-10=(x+10) | | 2x-11=-3x+19 | | 2x-11=3x+19 | | 5(5x+3)-4=(7x+10) | | -3(6n-6)=-8 | | 33=w/4+15 | | 109=-v+192 | | 11x-19+4x+1+6x+9=180 | | 4t^2-2t-30=0 | | .02x^2-8x+600=0 | | -3k+9=(9k+10) | | 1/2(x-8)=x-4 | | 4x=-24+6x | | -60=-5c | | -0.2=1-0.8x | | -0.2=|1-0.8x| | | -12=2(-8=m) | | 4x=-4+6x | | v/10=9.5 | | w-15=5.5 | | 6x-14=-2(x-5) | | -j/2=2 |